Characterization of LY3023414, a Novel PI3K/mTOR Dual Inhibitor Eliciting Transient Target Modulation to Impede Tumor Growth.

نویسندگان

  • Michele C Smith
  • Mary M Mader
  • James A Cook
  • Philip Iversen
  • Rose Ajamie
  • Everett Perkins
  • Laura Bloem
  • Yvonne Y Yip
  • David A Barda
  • Philip P Waid
  • Douglas J Zeckner
  • Debra A Young
  • Manuel Sanchez-Felix
  • Gregory P Donoho
  • Volker Wacheck
چکیده

The PI3K/AKT/mTOR pathway is among the most frequently altered pathways in cancer cell growth and survival. LY3023414 is a complex fused imidazoquinolinone with high solubility across a wide pH range designed to inhibit class I PI3K isoforms and mTOR kinase. Here, we describe the in vitro and in vivo activity of LY3023414. LY3023414 was highly soluble at pH 2-7. In biochemical testing against approximately 266 kinases, LY3023414 potently and selectively inhibited class I PI3K isoforms, mTORC1/2, and DNA-PK at low nanomolar concentrations. In vitro, inhibition of PI3K/AKT/mTOR signaling by LY3023414 caused G1 cell-cycle arrest and resulted in broad antiproliferative activity in cancer cell panel screens. In vivo, LY3023414 demonstrated high bioavailability and dose-dependent dephosphorylation of PI3K/AKT/mTOR pathway downstream substrates such as AKT, S6K, S6RP, and 4E-BP1 for 4 to 6 hours, reflecting the drug's half-life of 2 hours. Of note, equivalent total daily doses of LY3023414 given either once daily or twice daily inhibited tumor growth to similar extents in multiple xenograft models, indicating that intermittent target inhibition is sufficient for antitumor activity. In combination with standard-of-care drugs, LY3023414 demonstrated additive antitumor activity. The novel, orally bioavailable PI3K/mTOR inhibitor LY3023414 is highly soluble and exhibits potent in vivo efficacy via intermittent target inhibition. It is currently being evaluated in phase I and II trials for the treatment of human malignancies. Mol Cancer Ther; 15(10); 2344-56. ©2016 AACR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy inhibition sensitizes LY3023414-induced anti-glioma cell activity in vitro and in vivo

PI3K-AKT-mTOR signaling is a valuable treatment target for human glioma. LY3023414 is a novel, highly-potent and pan PI3K-AKT-mTOR inhibitor. Here, we show that LY3023414 efficiently inhibited survival and proliferation of primary and established human glioma cells. Meanwhile, apoptosis activation was observed in LY3023414-treated glioma cells. LY3023414 blocked AKT-mTOR activation in human gli...

متن کامل

PI3K and mTOR inhibitor, NVP-BEZ235, is more toxic than X-rays in prostate cancer cells

Background: Radiotherapy and adjuvant androgen deprivation therapy have historically been the first treatment choices for prostate cancer but treatment resistance often limits the capacity to effectively manage the disease. Therefore, alternative therapeutic approaches are needed. Here, the efficacies of radiotherapy and targeting the pro-survival cell signaling components epidermal growth fact...

متن کامل

Autophagy inhibition enhances colorectal cancer apoptosis induced by dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235

Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway performs a central role in tumorigenesis and is constitutively activated in many malignancies. As a novel dual PI3K/mTOR inhibitor currently undergoing evaluation in a phase I/II clinical trial, NVP-BEZ235 indicates a significant antitumor efficacy in diverse solid tumors, including colorectal cancer (CR...

متن کامل

Genomic profiling is predictive of response to cisplatin treatment but not to PI3K inhibition in bladder cancer patient-derived xenografts

PURPOSE Effective systemic therapeutic options are limited for bladder cancer. In this preclinical study we tested whether bladder cancer gene alterations may be predictive of treatment response. EXPERIMENTAL DESIGN We performed genomic profiling of two bladder cancer patient derived tumor xenografts (PDX). We optimized the exome sequence analysis method to overcome the mouse genome interfere...

متن کامل

Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor.

The mammalian target of rapamycin (mTOR) pathway may constitute a potential target for the treatment of malignant peripheral nerve sheath tumors (MPNST). However, investigations of other cancers suggest that mTOR blockade can paradoxically induce activation of prosurvival, protumorigenic signaling molecules, especially upstream AKT. Consequently, we hypothesized that dual phosphatidylinositol 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 15 10  شماره 

صفحات  -

تاریخ انتشار 2016